CIVIL-349 Traffic Engineering Nikolas Geroliminis Exercise

Stability analysis of a linear car following model

Author: Semin Kwak

Use Microsoft Excel, Matlab or a programming language of your preference to simulate the motion of two vehicles for 20 seconds (using increments of 0.1 s). The first vehicle (L for Leader), travels at a speed of 20m/s for one second, decelerates at $3m/s^2$ for one second, accelerates at $3m/s^2$ for one second, and travels at this speed for the remaining time (figure 1). The initial position of the second vehicle (F for Follower) is 70m behind the first car (distance measured between the front bumpers) and the initial speed is 30m/s. The acceleration of the second vehicle, a_F , is proportional to the speed difference between the two vehicles, $v_L(t) - v_F(t)$. The second driver responds with $\tau = 1$ second delay. This driver sensitivity C is 0.4. Refer the linear car following model: $a_F(t+\tau) = (C/\tau) \cdot (v_L(t) - v_F(t))$. Assume that a_F is 0 for t in [0,1).

- **a)** Draw a graph showing the relative speed over the simulated 20 seconds.
- **b)** Draw a graph showing the distance between the vehicles over the simulated 20 seconds.
 - c) What will be the distance of cars after the end of 4 and 10 sec?
- **d)** Repeat part b) and part c) for C=0.8 and C=1.1. Comment on the results.
- **e)** Repeat the analysis for six consecutive vehicles for values of C = 0.5, 0.8 and 1, the same initial speed of 20m/s and initial relative distance of 30m between each pair. For each C, draw one graph showing the speed of each vehicle, and another graph showing the relative distance between two consecutive cars. Comment on the results.

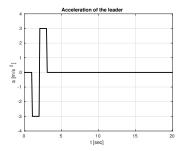


Figure 1: Acceleration of the leading vehicle.